Tribo-Surface Variation Caused by Ti2AlC and Ti3AlC2 Particles-Containing Lubricant under Cyclic Impact Loading

Author:

Shen Yan,Liu ZhixiangORCID,Xing Chuanfei,Li Qi,Fan Junjing

Abstract

Mn+1AXn (MAX) phase materials present an attractive potential for friction reduction and wear resistance applications due to the ternary layered structure. This work was done to investigate how the combination of Ti2AlC and Ti3AlC2 MAX phase particles with zinc dialkyl dithiophosp (ZDDP) additives in the lubricant affected the tribo-surface by means of a reciprocating test rig with cyclic impact loading. The results indicated that the friction and wear properties of Ti3AlC2-containing lubricant were better than those of Ti2AlC-containing lubricant. The distinctive microstructure of worn surface caused by the Ti3AlC2 particles was characterized by the uniform distribution of many fine scratches, while the other was distributed with more peeling pits by the Ti2AlC particles. The tribo-chemical reaction of ZDDP involving Ti3AlC2 particles promoted a larger regional distribution of the tribofilm and the generation of short-chain phosphates. The synergistic effect of Ti3AlC2 particles and ZDDP additives led to excellent tribological properties.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3