Tribochemistry as an Alternative Synthesis Pathway

Author:

Carlton HaydenORCID,Huitink David,Liang HongORCID

Abstract

While reactions driven by mechanical force or stress can be labeled mechanochemical, those specifically occurring at a sliding interface inherit the name tribochemical, which stems from the study of friction and wear: tribology. Increased perception of tribochemical reactions has been gained through technological advancement, and the development of new applications remains on-going. This surprising physico-kinetic process offers great potential in novel reaction pathways for synthesis techniques and nanoparticle interactions, and it could prove to be a powerful cross-disciplinary research area among chemists, engineers, and physicists. In this review article, a survey of the history and recent usage of tribochemical reaction pathways is presented, with a focus on forging new compounds and materials with this sustainable synthesis methodology. In addition, an overview of tribochemistry’s current utility as a synthesis pathway is given and compared to that of traditional mechanochemistry.

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3