Effect of Graphene on Nickel Surface Relaxation: Molecular Dynamics Simulation

Author:

Konorev Sergiy1ORCID,Yanchuk Vitalii1,Kruhlov Ivan1ORCID,Orlov Andrii1ORCID,Sidorenko Sergii1,Vladymyrskyi Igor1ORCID,Prikhodko Sergey2,Voloshko Svitlana1

Affiliation:

1. Department of Physical Materials Science and Heat Treatment, Igor Sikorsky Kyiv Polytechnic Institute, National Technical University of Ukraine, Prospect Beresteiskyi 37, 03056 Kyiv, Ukraine

2. Department of Materials Science and Engineering, University of California Los Angeles, 2121K-Engineering 5, 420 Westwood Plaza, Los Angeles, CA 90095-1595, USA

Abstract

The effect of graphene (GR) on Ni surface relaxation and reconstruction in three different substrate orientations, {111}, {001}, and {011}, at two different temperatures, 300 K and 400 K, was studied using molecular dynamics simulation. The change in the interplanar distances of the substrate and redistribution of Ni and C atoms in a direction perpendicular to the surface was compared with the equilibrium state of GR and bulk Ni, in the absence of the counterpart. The surface reconstruction for the GR/Ni system was analyzed based on the calculated radial pair distribution functions of Ni and C atoms. The surface roughness was visualized using 2D atomic distribution maps. The introduction of GR on the Ni surface in any crystallographic orientation decreases the maximum modification of interplanar spacing compared to the bulk by less than 1%. For the studied substrate orientations and temperatures, it was found that the most densely packed {111} orientation of the Ni base provides minimal changes in the structural parameters of both counterparts at 400 K. Additionally, the system formed by GR deposition on Ni {111} at 400 K is characterized by the least roughness.

Funder

U.S. Civilian Research & Development Foundation

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3