Synergistic Behavior of Graphene and Ionic Liquid as Bio-Based Lubricant Additive

Author:

Hasnul Muhammad Harith,Mohd Zulkifli Nurin Wahidah,Hassan Masjuki,Zulkifli Syahir Amzar,Mohd Yusoff Mohd Nur Ashraf,Zakaria Muhammad Zulfattah

Abstract

The constant utilization of petroleum-based products has prompted concerns about the environment, hence a replacement for these products must be explored. Biolubricants are a suitable replacement for petroleum-based lubricants as they provide better lubricity. Biolubricant performance can be improved by the addition of graphene. However, there are reports that graphene is unable to form a stable suspension for a long period. This study used a graphene-ionic liquid additive combination to stabilize the dispersion in a biolubricant. Graphene and ionic liquid were dispersed into the biolubricant via a magnetic stirrer. The samples were tested using a high frequency reciprocating rig. The cast iron sample was then further observed using various techniques to determine the lubricating mechanism of the lubricant. Different dispersion stability of graphene was observed for different biolubricants, which can be improved with ionic liquids. All ionic liquid samples maintained an absorbance value of three for one month. The utilization of ionic liquid was also able to decrease the frictional performance by 33%. Further study showed that by using the ionic liquid alone, the frictional could only reduce the friction coefficient by 13% and graphene could only reduce the friction by 7%. A smooth worn surface scar can be seen on the graphene-IL sample compared to the prominent corrosive spot on the IL samples and abrasive scars on graphene samples. This indicates synergistic behavior between the two additives. It was found that the ionic liquid does not only improve the dispersion stability, but also plays a role in forming the tribolayer.

Funder

Ministry of Higher Education, Malaysia

Universiti Malaya

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3