Forever Chemicals, Per-and Polyfluoroalkyl Substances (PFAS), in Lubrication

Author:

Dias Darrius1ORCID,Bons Jake1,Kumar Abhishek1ORCID,Kabir M.2,Liang Hong12ORCID

Affiliation:

1. J. Mike Walker ′66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123, USA

2. Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3127, USA

Abstract

Per- and polyfluoroalkyl substances (PFAS), also known as forever chemicals, exhibit exceptional chemical stability and resistance to environmental degradation thanks to their strong C-F bonds and nonpolar nature. However, their widespread use and persistence have a devastating impact on the environment. This review examines the roles of PFAS in tribological applications, specifically in lubricants and lubricating systems. This article focuses on conventional and advanced lubricants, including ionic liquids (ILs) and their use in modern automotive vehicles. The objective of this paper is to provide a comprehensive overview of the adverse impacts of PFAS whilst acknowledging their outstanding performance in surface coatings, composite materials, and as additives in oils and greases. The pathways through which PFAS are introduced into the environment via lubricating systems such as in seals and O-rings are identified, alongside their subsequent dispersion routes and the interfaces across which they interact. Furthermore, we examine the toxicological implications of PFAS exposure on terrestrial and aquatic life forms, including plants, animals, and humans, along with the ecological consequences of bioaccumulation and biomagnification across trophic levels and ecosystems. This article ends with potential remediation strategies for PFAS use, including advanced treatment technologies, biodegradation, recovery and recycling methods, and the search for more environmentally benign alternatives.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3