Effect of Nb Addition on the Corrosion and Wear Resistance of Laser Clad AlCr2FeCoNi High-Entropy Alloy Coatings

Author:

Ji Xiulin1ORCID,Guan Kunpeng1,Bao Yayun2,Mao Zhongfa1,Wang Fengtao1,Dai Houfu1ORCID

Affiliation:

1. Department of Mechanical Engineering, Shantou University, Shantou 515063, China

2. Bomag (Changzhou) Construction Machinery Co., Ltd., Changzhou 213125, China

Abstract

Laser clad AlCr2FeCoNiNbx (x = 0, 0.5, 1.0, 1.5, 2.0, with x values in molar ratio) high-entropy alloy (HEA) coatings were fabricated on Q345 carbon steel. This study delves into the impact of Nb incorporation on the reciprocating sliding wear resistance of these laser clad coatings against a Φ6 mm silicon nitride ball. The microstructure of the as-clad AlCr2FeCoNiNbx coatings transformed from a single Face-Centered Cubic (FCC) solid solution (when x = 0) to the hypoeutectic state (when x = 0.5) and progressed to the hypereutectic state (when x ≥ 1.0). This evolution was marked by an increase in the Laves phase and a decrease in FCC. Consequently, the HEA coatings exhibited a gradually increasing Vickers hardness, reaching a peak at HV 820. Despite a decline in corrosion resistance, there was a notable enhancement in wear resistance, and the friction of the HEA coating could be reduced by Nb addition. The phase evolution induced by Nb addition led to a shift in the predominant wear mechanism from delamination wear to abrasive wear. The wear rate of Nb0.5 was impressively low, at 6.2 × 10−6 mm N−1 m−1 when reciprocating sliding under 20 N in air. In comparison to Nb0, Nb0.5 showcased 3.6, 7.2, and 6.5 times higher wear resistance at 5 N, 10 N, and 20 N, respectively. Under all applied loads, Nb1.5 has the lowest wear rate among all HEA coatings. This substantiates that the subtle introduction of Laves phase-forming elements to modulate hardness and oxidation ability proves to be an effective strategy for improving the wear resistance of HEA coatings.

Funder

STU Scientific Research Foundation for Talents

Li Ka Shing Foundation Cross-Disciplinary Research

Guangdong Provincial University Innovation Team Project

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3