Incep-FrictionNet-Based Pavement Texture Friction Level Classification Prediction Method

Author:

Xu Guomin1,Lin Xiuquan23,Wang Shifa1,Zhan You23ORCID,Liu Jing1,Huang He1

Affiliation:

1. Sichuan Chengmian Cangba Highway Co., Ltd., Chengdu Branch, Chengdu 610000, China

2. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China

3. Highway Engineering Key Laboratory of Sichuan Province, Chengdu 610031, China

Abstract

Pavement skid resistance is crucial for driving safety, and pavement texture significantly impacts skid resistance performance. To realize the application of pavement texture data in assessing pavement skid resistance performance, this paper proposes a convolutional neural network model based on the InceptionV4 module to predict the pavement friction level from the pavement texture dataset. The surface texture data of indoor test-rutted slabs were collected using a portable laser scanner. The surface friction coefficient of rutted slabs was measured using a pendulum tribometer. After data pre-processing, a total of nine types of texture data that are in the range of 0.4 to 0.8 skid resistance levels are selected at an interval of 0.05 for training, validation, and testing of the network model. The same dataset and training parameters were also used to train a conventional convolutional network model for comparison. The results showed that the proposed network model achieved 97.89% classification accuracy on the test set, which was 11.94 percentage points higher than the comparison model. This demonstrates that the proposed model in this paper can evaluate pavement friction levels by non-contact scanning of textures and has higher evaluation accuracy.

Funder

Natural Science Foundation of Sichuan Province

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3