Effect of Composite Bionic Micro-Texture on Cutting Performance of Tools

Author:

Xu Tiantian1,Ma Chunlu1,Shi Hu1,Xiao Kai1,Liu Jinpeng2,Li Qinghua1

Affiliation:

1. School of Mechanical and Vehicle Engineering, Changchun University, Changchun 130022, China

2. Technology Centre, CNAD Changchun Control Technology Co., Changchun 130102, China

Abstract

Dry cutting is an effective method to realize the concept of green cutting today. However, in the process of cutting bearing steel, the high temperatures and high pressures produced by the cutting tool and chip under dry friction seriously affect the machining performance of the tool. Therefore, a bionic microstructure tool based on bionics is proposed to improve the cutting performance and reduce friction by changing the size parameters of the microstructure. On the basis of finite element simulation and cutting tests, the cutting force, surface roughness, and chip shape are used to evaluate the cutting performance. It is found that composite bionic micro-textured tools have a significantly reduced cutting force compared with non-micro-textured tools; composite bionic micro-textured tools lead to a reduction in surface roughness of 10–25%; and composite bionic micro-textured tools are more prone to enhancing the curling and breaking of chips. In addition, with the increase in the microstructure area occupancy, the cutting performance of the tool was also significantly improved. Moreover, it was found that the cutting performance of the tool was improved when the area occupancy of the micro-texture on the front face of the tool was increased.

Funder

Jilin Provincial Department of Education

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3