Long-Term Storage Considerations for Spacecraft Lubricants

Author:

Buttery Michael,Lewis Simon,Kent Anthony,Bingley RachelORCID,Cropper Matthew

Abstract

Spacecraft mechanisms commonly undergo extended periods of storage, either on-ground, or in-flight and there are an increasing number of missions for which some element of long-term storage may be required. Despite the obvious potential for degradation of lubricants during storage which might impact mechanism functionality or life and so even become mission-threatening, today’s understanding of storage phenomena is rather incomplete. This paper provides consolidation and review of recent experimental studies in this area and considers the range of storage conditions and associated degradation phenomena which could impact different lubricants. Whilst some storage best practice guidelines exist, experimental verification of the impact of storage phenomena has rarely been carried out and test data is rather scarce and incomplete. Given the absence of comprehensive data to support design, lubricant selection or the development of storage protocols, it is shown that for all lubricant types careful control of storage and test environments combined with monitoring of the evolving tribological performance during periodic mechanism exercising are presently the most effective storage risk mitigations.

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Reference22 articles.

1. Spiral Orbit Tribometry — Part I: Description of the Tribometer

2. The Tribology of Sputtered Molybdenum Disulphide Films;Roberts;Tribol. Frict. Lubr. Wear Fifty Years IMechE,1987

3. Effects of Ground Testing on The Torque Performance of MoS2 Lubricated Ball Bearings Fitted with Duroid Cages;Cunningham,1998

4. Anomalous wear behavior of MoS2 films in moderate vacuum and dry nitrogen

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3