Theoretical and Numerical Investigation of Reduction of Viscous Friction in Circular and Non-Circular Journal Bearings Using Active Lubrication

Author:

Shutin Denis1ORCID,Kazakov Yuri1

Affiliation:

1. Department of Mechatronics, Mechanics and Robotics, Orel State University, 302015 Orel, Russia

Abstract

Reducing friction losses is one of the most common ways to improve fluid film bearings, whose adjustable design provides additional opportunities to improve their dynamic and tribological properties. Previous studies have shown the possibility of reducing viscous friction in actively lubricated bearings by adjusting the rotor position. This work provides a theoretical justification for the mechanism of this effect for the cases of purely laminar lubricant flows in journal bearings. The operating modes connected with the transition to turbulent phenomena and the occurrence of Taylor vortices are beyond the scope of this paper. Conditions that ensure the minimization of friction losses in hydrodynamic and hybrid bearings with hydrostatic parts are determined based on the equations describing viscous friction in a fluid film. In non-adjustable plain hydrodynamic bearings, the minimum of friction is achieved with the centered shaft position that is actually unstable due to the resulting forces configuration. In actively lubricated hybrid bearings, a further reduction in viscous friction is possible by combining film thickness and pressure distributions. Recombining them, along with adjustment of the shaft position, allows the optimization of the distribution of shear stresses in the fluid film. As a result, the shear stresses caused by the rotation of the shaft can be partially compensated by the stresses caused by the pressure gradient, reducing the torque-resisting rotation. In addition, additional benefits can be obtained in the minimum friction state by the reduced lubricant flow and power losses to its pumping. A series of numerical calculations for elliptical, 3-, and 4-lobe bearings show that non-circular bores provide additional variability in film thickness distribution and a premise for optimizing the bearing tribological parameters. Four-lobe bearing demonstrated the best ability for reducing viscous friction among the considered designs. The results obtained can be used as a basis for further optimization of the geometry of fluid film bearings of both active and passive designs by reducing power losses due to viscous friction.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3