Analysis of the Effect of the Slip-Pocket in Single and Double Parallel Bearing Considering Cavitation: A Theoretical Approach

Author:

Muchammad M.,Tauviqirrahman MohammadORCID,Jamari J.ORCID,Schipper D. J.ORCID

Abstract

In this paper, based on an analytical approach, the effect of pockets and boundary slip on the hydrodynamic performance of parallel sliding surfaces considering cavitation is investigated. A modified Reynolds theory is developed for solving two kinds of bearings: a single and a double pocket bearing. The performance is compared with respect to the variation of the pocket depth, pocket length, slip, and no-slip situation. The results show that the maximum pressure and load support increases with the reduction in pocket length. The main finding is that the pocket depth reduces the cavitation area. However, in the case of a single pocket, the role of pocket depth is more significant in reducing the cavitation effect than that in the case of a double pocket bearing.

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computational study on the performance of textured parallel thrust bearings considering artificial slip;PROCEEDINGS OF THE 9TH INTERNATIONAL SYMPOSIUM ON INNOVATIVE BIOPRODUCTION INDONESIA ON BIOTECHNOLOGY AND BIOENGINEERING 2022: Strengthening Bioeconomy through Applied Biotechnology, Bioengineering, and Biodiversity;2023

2. Hydrodynamic lubrication analysis of hydrophobic textured journal bearing considering cavitation;Cogent Engineering;2022-05-26

3. Effect of Reynolds number on pressure behavior of slider contact with triangular dimple considering slip;Materials Today: Proceedings;2022

4. CFD Analysis of Hydrodynamically Lubricated Textured Slider Bearings;Lecture Notes in Mechanical Engineering;2022

5. Reynolds Model versus JFO Theory in Steadily Loaded Journal Bearings;Lubricants;2021-11-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3