Micro-Wear Simulation of Braking Interface Based on Particle Discrete Element Modeling

Author:

Sha Zhihua,Hao Qiang,Yin Jian,Ma Fujian,Liu Yu,Zhang Shengfang

Abstract

For material fracture and severe wear in braking conditions, the discrete element method (DEM) is used to simulate the wear process of the braking interface explicitly. Based on the central difference method, particle motion equations are established considering the influence of elemental damping on particle contact. Combined with the Particle Flow Code (PFC) software, a DEM wear model of the braking interface is established using the parallel bond modeling method. The braking wear process is simulated, and the material damage process is investigated. The simulation results demonstrate that with the increase of the initial braking load and the initial braking speed, the wear depth increased by 24.75% and 16.22%, respectively. The increase in the number of detached particles leads to an increasing trend of fracture force chains, which increases the thickness of the flowing particle layer, revealing the micro-wear mechanism of the braking interface.

Funder

National Natural Science Foundation of China

Scientific Research Project of the Education Department of Liaoning Province

Dalian Science and Technology Innovation Fund

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3