Rotordynamic Analysis and Operating Test of an Externally Pressurized Gas Bearing Turbo Expander for Cryogenic Applications

Author:

Lee Donghyun1ORCID,Lim Hyungsoo1ORCID,Kim Byungock1,Jeon Byungchan1,Park Junyoung1

Affiliation:

1. Korea Institute of Machinery and Materials, Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, Republic of Korea

Abstract

This study designed an externally pressurized bearing and analyzed the rotordynamics of a turbo expander for a hydrogen liquefaction plant. The turbo expander, comprising a turbine and compressor wheel assembled to a shaft, lowered the temperature of the helium refrigerant. Its rated speed was 75,000 rpm, and an externally pressurized gas bearing was selected to support the rotor. Pressurized helium was used as the lubricant for the bearing operation. To design the rotor–bearing system, we conducted a bearing performance analysis and rotordynamic characteristic prediction using the developed numerical model. We calculated the bearing stiffness and flow rate of the bearing gas for various feed parameters and selected the appropriate orifice diameter for maximum stiffness. The predicted Campbell diagram showed that the system had a sufficient separation margin with the critical speed, and the predicted critical speed correlated well with the nonlinear orbit simulation. A successful operation was achieved with the manufactured turbo expander within the rated speed. The shaft vibration was monitored during the operation test, and the test results revealed two critical speeds below the rated speed, as predicted by the analytical model. In addition, the shaft vibration was maintained at <3 μm.

Funder

Development of Core Technologies for Commercial Hydrogen Liquefaction Plant Program funded by the Ministry of Land, Infrastructure, and Transport of the government of South Korea

Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea governmen

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3