A Comparison of the Tribological Properties of SiC Coatings Prepared via Atmospheric Plasma Spraying and Chemical Vapor Deposition for Carbon/Carbon Composites

Author:

Qi Yan1,Gao Jiumei12,Liang Wenping1,Miao Qiang12,Jia Feilong12,Chang Xiangle1,Lin Hao324ORCID

Affiliation:

1. College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China

2. Wuxi Research Institute, Nanjing University of Aeronautics and Astronautics, Wuxi 214100, China

3. Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, China

4. Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganzhou 341119, China

Abstract

The microstructure, mechanical performance, and tribological properties of SiC ceramic coatings prepared via atmospheric plasma spraying (APS) and chemical vapor deposition (CVD) method were compared to provide good anti-wear protection for carbon/carbon composites. The surface morphology of the APS-SiC coating was characterized as having a porous structure, whilst the CVD-SiC coating presented with many pyramidal-shaped crystals constituting the surface. The APS-SiC coating consists of a dominating SiC phase and a small fraction of the Si phase, while the XRD pattern of the CVD-SiC coating mainly consists of the SiC phase. The dense crystalline microstructure of the CVD-SiC coating made it possess a higher hardness and Young’s modulus at 31.0 GPa and 275 GPa, respectively. The higher H/E and H3/E2 parameters of the CVD-SiC coating implied that it exhibited better plastic resistance, which is also beneficial for anti-wear properties. The scratch test reflected the critical loads of the spallation of the APS-SiC coating and CVD-SiC coating, which were evaluated to be 25.9 N and 36.4 N, respectively. In the tribological test, the friction coefficient of the APS-SiC coating showed obvious fluctuations at high load due to damage to the SiC coating. The wear mechanism of the APS-SiC coating was dominated by abrasive wear and fatigue wear, while CVD-SiC was mainly dominated by abrasive wear. The wear rate of the CVD-SiC coating was far below that of the APS-SiC coating, suggesting the better wear-resistance of the CVD-SiC coating.

Funder

National Major Science and Technology Projects of China

National Natural Science foundation of China

Opening Fund of Key Laboratory of Rare Earths, Chinese Academy of Sciences

Opening Fund of the Wuxi Research Institute, Nanjing University of Aeronautics and Astronautics

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3