Numerical Computation and Experimental Research for Dynamic Properties of Ultra-High-Speed Rotor System Supported by Helium Hydrostatic Gas Bearings

Author:

Ke Changlei1ORCID,Qiu Shun12,Li Kongrong1,Xiong Lianyou12,Peng Nan12,Zhang Xiaohua1,Dong Bin1,Liu Liqiang12

Affiliation:

1. Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, CAS, Beijing 100190, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

This study delves into the dynamic behavior of ultra-high-speed rotor systems underpinned by helium hydrostatic gas bearings, with a focus on the impact of rotational velocity on system performance. We have formulated an integrative dynamic model that harmonizes the rotor motion equation with the transient Reynolds equation. This model has been meticulously resolved via the Finite Difference Method (FDM) and the Wilson-Θ technique. Our findings unveil intricate nonlinear dynamics, including 2T-periodic and multi-periodic oscillations, and underscore the pivotal role of first-order temporal fluctuations, which account for over 20% of the transient pressure at rotational speeds exceeding 95.0 krpm. Further, we have executed empirical studies to evaluate the system’s performance in practical settings. It is observed that when the ratio of low-frequency to fundamental frequency approaches 0.3 and the amplitude ratio exceeds 3, the vigilant monitoring of system stability and reliability is imperative. Collective insights from both computational simulations and experimental studies have enriched our understanding of the dynamic attributes of ultra-high-speed rotor systems. These revelations are crucial for the advancement of more efficacious and resilient rotor systems designed for high-speed applications.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3