Evaluation of a Commercial MoS2 Dry Film Lubricant for Space Applications

Author:

Johnson Duval A.1,Gori Marcello1ORCID,Vellore Azhar1ORCID,Clough Andrew J.2,Sitzman Scott D.2,Lince Jeffrey R.3ORCID,Martini Ashlie4ORCID

Affiliation:

1. NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr, Pasadena, CA 91109, USA

2. The Aerospace Corporation, 2310 E. El Segundo Blvd., El Segundo, CA 90245, USA

3. Space Tribology Consulting, Inc., Culver City, CA 90232, USA

4. Department of Mechanical Engineering, University of California Merced, 5200 N. Lake Road, Merced, CA 95343, USA

Abstract

Molybdenum disulfide coatings, particularly Microseal 200-1, have been extensively used as dry film lubricants for actuating mechanisms in space applications. Although Microseal 200-1 has historically been a popular choice for space missions, recent assessments indicate a need for reexamination. This study evaluates sliding friction in air and dry gaseous nitrogen atmospheres at ambient temperatures with both linear reciprocating and rotary unidirectional tribo-tests. Measurements are performed for Microseal 200-1 applied on substrates and surface treatments commonly used in aerospace components, particularly stainless steel and a titanium alloy. Our findings indicate that the friction of stainless steel balls sliding on Microseal 200-1-coated disks is significantly influenced by the environment as well as the disk substrate material. The average friction coefficient ranges from 0.12 to 0.48 in air and from 0.04 to 0.41 in dry gaseous nitrogen, and the amount of friction is consistently much higher for the Microseal 200-1 on the stainless steel than on the titanium alloy. Microscopy and surface analyses, including scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray fluorescence, of the coatings on stainless steel substrates reveals that the coatings are sparse and relatively thin, likely a key factor contributing to their high friction. This insight underscores the substrate dependence of this widely used coating and highlights the importance of detailed tribological testing in accurately assessing the tribological performance of commercial dry film lubricants, a key step towards improving the reliability and effectiveness of actuating mechanisms for space applications.

Funder

Jet Propulsion Laboratory, California Institute of Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3