A Phenomenological Model for Estimating the Wear of Horizontally Straight Slurry Discharge Pipes: A Case Study

Author:

Li Xinggao12ORCID,Guo Yidong12,Li Xingchun3,Liu Hongzhi4,Yang Yi12ORCID,Fang Yingran12

Affiliation:

1. Key Laboratory of Urban Underground Engineering, Education Ministry, Beijing Jiaotong University, Beijing 100044, China

2. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China

3. Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen 529020, China

4. CCCC Tunnel Engineering Co., Ltd., Beijing 100024, China

Abstract

When a slurry TBM advances in pebble and rock strata, large rock particles are carried in pipelines out of a tunnel by moving slurry. To estimate the wear of horizontally straight slurry discharge pipes, a phenomenological model was proposed that was mainly based on knowledge gained by means of direct and indirect in situ observations. The proposed model applies an equation composed of three variables, namely, the wear rate (λ), the central angle (2α), and the excavated tunnel length (L), to estimate the wear distribution along a pipe’s internal surface. The results indicated that wear mainly occurred on the bottoms of pipes. In addition, linear relationships between the maximum pipe wear amount (δmax) and the excavated tunnel length (L) were found for specific pipes and specified types of ground. The observed wear rates of different pipes in different types of ground had varied constants. The wear rates were higher for pipes in rock ground than for those in a pebble layer. For horizontally straight pipes, the observed wear rates were 0.0045 mm/m in a pebble layer and 0.0212 mm/m in rock ground. Lastly, to improve the proposed model, more field monitoring will be necessary to determine the pipe wear rates in different types of ground in the future.

Funder

Fundamental Research Funds for the Central Universities

National Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3