Tribofilm Formation and Friction Reduction Performance on Laser-Textured Surface with Micro-Grooved Structures

Author:

Li Qianru1,Lu Renguo2ORCID,Tani Hiroshi2,Kawada Shohei2ORCID,Koganezawa Shinji2,Liu Xujun3,Cong Peihong3

Affiliation:

1. Graduate School of Science and Engineering, Kansai University, Osaka 564-8680, Japan

2. Faculty of Engineering Science, Kansai University, Osaka 564-8680, Japan

3. State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China

Abstract

Tribofilms, resulting from tribochemical reactions involving lubricants, additives, and metal surfaces, are pivotal in reducing friction, preventing adhesion, and minimizing wear. This study investigates the tribological characteristics of textured surfaces in boundary lubrication, emphasizing the impact of surface texturing on tribofilm formation. Untextured surfaces manifest high friction coefficients and low wear owing to the development of thick tribofilms. However, debris accumulation impedes further tribochemical reactions, necessitating more energy for sliding and resulting in higher friction coefficients. Additionally, molybdenum dialkyl dithiocarbamate-derived MoS2 oxidation diminishes the expected lubrication effect. Textured surfaces exhibit lower friction coefficients and higher wear because the structure aids debris removal, promoting the formation of thinner tribofilms. Despite increased wear from solid-to-solid contact, textured surfaces facilitate an early fluid lubrication transition and enhance cavitation capacity, leading to reduced friction coefficients. We also consider the impact of sliding direction angles on friction coefficients, revealing that lower angles parallel to the grooves heighten friction, whereas higher angles enhance cavitation capacity. Unexpectedly, a 90° sliding direction angle increases the friction coefficients, attributed to MoS2 distribution in the tribofilms. These results provide crucial insights for optimizing lubrication strategies and enhancing wear resistance in boundary lubrication scenarios.

Funder

Fudan University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3