Roles of Eco-Friendly Non-Edible Vegetable Oils in Drilling Inconel 718 through Minimum Quantity Lubrication

Author:

Safie Nur Syahilia Syahira,Murad Muhamad Nasir,Lih Tan Chye,Azmi Azwan IskandarORCID,Wan Hamzah Wan AzmiORCID,Danish MohdORCID

Abstract

Metal cutting fluids (MCFs) have played a principal role as coolants and lubricants in the machining industry. However, the wide use of mineral-based oil MCFs has contributed to an adverse effect on humans and the environment. Thus, to overcome the adverse effects of mineral-based oil MCFs, eco-friendly vegetable oil, which is non-edible oil, has been implemented to overcome the issues related to edible oil such as manufacturing costs and food shortages. This study investigated the performance of three different types of non-edible oil, namely castor, neem, and rice bran oils in drilling Inconel 718 using a coated titanium aluminum nitride (TiAlN) carbide drill towards tool life, tool wear, surface integrity, dimensional accuracy, and chip thickness. The MCFs were implemented under the minimum quantity lubrication (MQL) condition at a 50 mL/h flow rate using different cutting speeds (10, 20 m/min) and a constant feed (0.015 mm/rev). The results showed that castor oil minimizes the rapid growth of tool wear and prolongs the tool life by 50% at 10 m/min as compared to rice bran oil. At 20 m/min, castor oil obtained the lowest values of average surface roughness (1.455 µm) and chip thickness (0.220 mm). It was also found that different cutting speeds did not contribute to any significant trend towards hole diameter and roundness for all MCFs. The outstanding performance of castor oil proved that the oil is a potential alternative as an eco-friendly MCF for a cleaner machining environment. Castor oil was determined to be optimum in terms of tool life, tool wear, surface roughness, and chip thickness.

Funder

Ministry of Higher Education Malaysia

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3