Effect of Graphene Addition in Cutting Fluids Applied by MQL in End Milling of AISI 1045 Steel

Author:

Baldin VitorORCID,Rosa Ribeiro da Silva LeonardoORCID,Houck Celso Ferraz,Gelamo Rogério ValentimORCID,Machado Álisson Rocha

Abstract

The cutting fluids applied to the machining processes by the MQL process aim to reduce the machining temperatures and tool wear as well as improve the surface and dimensional finishing of the parts. To increase the efficiency of these fluids, graphene lubricating platelets are added. This work investigated the performance of three different cutting fluids with graphene sheets added and applied via MQL, considering the tool life, wear, and wear mechanisms acting on TiAlN-coated cemented carbide cutting tools in the end milling of AISI 1045 steel. We evaluated two vegetable- (MQL15 and LB1000) and one mineral-based (MQL14) neat oils and the same fluids with the addition of 0.05 and 0.1%wt graphene nanoplatelets. Dry cuts were also performed and investigated for comparison. The experiments were conducted under fixed cutting conditions (vc = 250 m/min, fz = 0.14 mm/tooth, ap = 1 mm, and ae = 20 mm). The end-of-tool-life criterion followed the guidelines of ISO 8688-1 (1989). To analyze the results, ANOVA and Tukey’s test were applied. The addition of graphene sheets in the vegetable-based cutting fluids effectively increased the lubricating properties, partially reducing the wear mechanisms acting on the tools. In addition, there was a predominance of thermal fatigue cracks and mechanical cracks as well as adhesive and abrasive wear mechanisms on the tools used in the cutting with the MQL15 and MQL14 fluids, indicating greater cyclical fluctuations in temperature and surface stresses.

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3