Intelligent Tool Wear Monitoring Method Using a Convolutional Neural Network and an Informer

Author:

Xie Xingang12,Huang Min12,Sun Weiwei2ORCID,Li Yiming2,Liu Yue2ORCID

Affiliation:

1. School of Mechanical Electronic and Information Engineering, China University of Mining and Technology-BEIJING, Beijing 100083, China

2. Mechanical Electrical Engineering School, Beijing Information Science and Technology University, Beijing 100192, China

Abstract

Tool wear (TW) is the gradual deterioration and loss of cutting edges due to continuous cutting operations in real production scenarios. This wear can affect the quality of the cut, increase production costs, reduce workpiece accuracy, and lead to sudden tool breakage, affecting productivity and safety. Nevertheless, since conventional tool wear monitoring (TWM) approaches often employ complex physical models and empirical rules, their application to complex and non-linear manufacturing processes is challenging. As a result, this study presents a TWM model using a convolutional neural network (CNN), an Informer encoder, and bidirectional long short-term memory (BiLSTM). First, local feature extraction is performed on the input multi-sensor signals using CNN. Then, the Informer encoder deals with long-term time dependencies and captures global time features. Finally, BiLSTM captures the time dependency in the data and outputs the predicted tool wear state through the fully connected layer. The experimental results show that the proposed TWM model achieves a prediction accuracy of 99%. It is able to meet the TWM accuracy requirements of real production needs. Moreover, this method also has good interpretability, which can help to understand the critical tool wear factors.

Funder

Ministry of Industry and Information Technology’s High-end Numerical Control Systems and Servo Motors Project

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3