An Investigation of the Sequential Micro-Laser Drilling and Conventional Re-Drilling of Angled Holes in an Inconel 625 Ni-Based Alloy

Author:

Szwajka Krzysztof1ORCID,Zielińska-Szwajka Joanna2ORCID,Żaba Krzysztof3ORCID,Trzepieciński Tomasz4ORCID

Affiliation:

1. Department of Integrated Design and Tribology Systems, Faculty of Mechanics and Technology, Rzeszow University of Technology, ul. Kwiatkowskiego 4, 37-450 Stalowa Wola, Poland

2. Department of Component Manufacturing and Production Organization, Faculty of Mechanics and Technology, Rzeszow University of Technology, ul. Kwiatkowskiego 4, 37-450 Stalowa Wola, Poland

3. Faculty of Non-Ferrous Metals, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland

4. Department of Manufacturing Processes and Production Engineering, Rzeszow University of Technology, al. Powstańców Warszawy 8, 35-959 Rzeszow, Poland

Abstract

The conventional (mechanical) micro-drilling of Inconel 625 alloys suffers from premature breakage of the drill bit due to its brittle nature and limited cutting tool life. Even greater problems are encountered when micro-drilling holes at an acute angle to the machining plane. In such a process, there are great difficulties associated with the low stiffness of the tool, which leads to the frequent breakage of the drill during machining. Therefore, in this type of mechanical drilling operation, the hole surface is usually milled with an end mill to provide a flat surface on the entry side of the drill bit. The aim of this article is to recognise the process of sequential micro-drilling and to assess the possibility of its use as an effective and efficient method of micro-drilling in hard-to-cut metals. The paper describes the process of initial laser drilling followed by final mechanical micro-drilling. Inconel 625 Ni-based alloy sheets were used as the test material. The shape and microstructure of pre-holes made with a laser, the volumetric efficiency of laser processing, the energy in the mechanical drilling process, and tool wear were analysed. The research results show that in the sequential drilling process, mechanical re-drilling eliminates the geometrical discrepancies resulting from the laser pre-drilling. In addition, it was found that, compared to mechanical micro-drilling, the use of sequential micro-drilling resulted in a two-fold increase in drill life. It has been also observed that sequential machining reduces the energy demand by 60% compared to mechanical micro-drilling. In addition, it was found that the edge of the drill bit is a key factor in deciding the target diameter of the laser-drilled pilot hole, and thus in selecting the micro-drilling parameters.

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3