Research on Evaluation Indicator of Ice Rink and Curling Stone Motion for the 2022 Beijing Winter Olympic Games Based on Video Recognition Method

Author:

Yang Qiyong1,Li Shuaiyu23ORCID,Li Junxing23ORCID,Zhang Wenyuan23,Wang Quan4,Ma Xiuyue5

Affiliation:

1. Beijing National Aquatics Center Co., Ltd., Beijing 100101, China

2. Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin 150090, China

3. Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin 150090, China

4. SenseTime Research, Beijing 100080, China

5. China Men’s National Curling Team, Beijing 100080, China

Abstract

During curling sports, the movement of the stone is affected by the quality of the ice. Therefore, the delivery team led by the ice maker hopes that the quality of the ice surface will be stable and that the athletes will always ‘read the ice’ and pay attention to the small changes in the ice surface. This phenomenon is the charm of curling. Many friction models have been proposed to describe the regularity of the curling motion. In the curling competitions of the 2022 Beijing Winter Olympic Games, the 2021 World Wheelchair Curling Championships, and the warm-up competition before, the research team installed a video image capture system in the arena to capture and record the data of the curling motion by using the depth neural network and object tracking algorithm. Further motion data research verifies the relationship between the friction coefficient and the speed. The quality control parameter of ice rink α is proposed, which is related to the influencing factors of the ice surface temperature, the ice hardness, the size of the pebble point, and the width of the curling friction band. The quality of the curling ice rink can be evaluated accurately and comprehensively by using parameter α. Based on the relationship between the friction coefficient and the speed, a physical model of horizontal sliding of the curling stone is established, which agrees well with the results of data obtained from video acquisition. Therefore, the movement distance along the rink can be accurately predicted. This paper analyzes the relationship between the long-time (the time it takes for the curling stone to travel between the two hog lines) and the stop position and that between the long-time and the split-time (the time it takes for the curling stone to travel from the back line to the hog line). Based on this result, a ruler can be established to assist athletes in estimating the sliding distance of the stone before curling throwing. This research also studies the relationship between three factors (the sliding speed in the x-direction, the angular speed, and a tiny lateral deflection speed in the y-direction) and the deviation of the stone. At the same time, there are also some interesting phenomena of the lateral deflection of the stone, such as the relationship between the lateral deflection angle tanθ and the initial lateral speed. As a result, the prediction of the curling stone’s exact final location can be realized. In summary, this article proposes an indicator for evaluating the quality of ice rinks and a physical model of curling based on the curling friction model, which is validated by data obtained from a video capture system of the 2022 Beijing Winter Olympics. The results described above have been applied in the post-match operation of the National Aquatics Center to guide the production of Olympic-grade ice surfaces and to guide athletes to “read ice” accurately during training.

Funder

National Key Research and Development Project of China

Science and Technology R&D plan of CSCEC

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3