Lubrication Performance of Misaligned Journal Bearings with Flexible Structure under Shock Load Conditions

Author:

Hong Sung-Ho1ORCID,Jeon Woo-Ju2

Affiliation:

1. Department of Mechanical System Engineering, Dongguk University-WISE Campus, Gyeongju-si 38066, Republic of Korea

2. Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea

Abstract

Bearings might be damaged due to shock loads caused by disturbances, in addition to static loads. In this study, a flexible structure was applied to enhance the lubrication characteristics of misaligned journal bearings subjected to impact loads. When an impact load is added to the bearing, a misaligned journal bearing has a high possibility of metal-to-metal contact. It might also lead to failure. Misalignment can occur at any time during bearing operation. A flexible structure is applied to the end of the bearing as a way to improve lubrication performance in a system where impact loads might be applied. The bearing’s lubrication performance was numerically assessed under unsteady-state conditions. An elastohydrodynamic lubrication analysis was conducted, taking into account elastic deformation. The lubrication characteristics of misaligned journal bearings were compared with the dimensionless minimum film thickness. The flexible structure and elastic modulus of the bearing were investigated so that it could support the load without contact according to the change in the maximum magnitude of the impact load. When subjected to oil film pressure, this flexible structure underwent elastic deformation, resulting in enlargement of the oil film. A misaligned journal bearing with a suitable flexible structure provided stable lubrication without metal-to-metal contact, even under shock load conditions. The flexible structure was incorporated into the high-load-bearing region of the journal bearing as a groove. Therefore, the application of a flexible structure in misaligned journal bearings can effectively enhance lubrication performance in misaligned conditions and under shock loads.

Funder

Korea Hydro & Nuclear Power Co.

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3