Modelling of Frictional Conditions in the Wheel–Rail Interface Due to Application of Top-of-Rail Products

Author:

Trummer GeraldORCID,Lee Zing Siang,Lewis Roger,Six Klaus

Abstract

The coefficient of friction between a wheel tread and the top of the rail should be maintained at intermediate levels to limit frictional tangential contact forces. This can be achieved by applying top-of-rail products. Reducing the coefficient of friction to intermediate levels reduces energy consumption and fuel costs, as well as damage to the wheel and rail surfaces, such as, e.g., wear, rolling contact fatigue, and corrugation. This work describes a simulation model that predicts the evolution of the coefficient of friction as a function of the number of wheel passes and the distance from the application site for wayside application of top-of-rail products. The model considers the interplay of three mechanisms, namely the pick-up of product by the wheel at the application site, the repeated transfer of the product between the wheel and rail surfaces, and the product consumption. The model has been parameterized with data from small-scale twin disc rig experiments and full-scale wheel–rail rig experiments. Systematic investigations of the model behaviour for a railway operating scenario show that all three mechanisms may limit the achievable carry-on distance of the product. The developed simulation model assists in understanding the interplay of the mechanisms that govern the evolution of the coefficient of friction in the field. It may aid in finding optimal product application strategies with respect to application position, application amount, and application pattern depending on specific railway operating conditions.

Funder

Federal Railroad Administration

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Reference33 articles.

1. The “leaves on the line” problem—a study of leaf residue film formation and lubricity under laboratory test conditions

2. Twin disc assessment of wheel/rail adhesion

3. Laboratory investigation of some sanding parameters to improve the adhesion in leaf-contaminated wheel—rail contacts

4. Further Development of Modelling the Effects of Low Adhesion Mechanisms;Buckley-Johnstone,2020

5. The composition and friction-reducing properties of leaf layers;Watson;Math. Phys. Eng. Sci.,2020

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3