Investigations of the Friction Losses of Different Engine Concepts: Part 3: Friction Reduction Potentials and Risk Assessment at the Sub-Assembly Level

Author:

Knauder ChristophORCID,Allmaier HannesORCID,Sander David E.ORCID,Sams Theodor

Abstract

One of the biggest requirements of today’s engine development process for passenger cars is the need to reduce fuel consumption. A very effective and economic approach is the use of low-viscosity lubricants. In this work, sub-assembly resolved friction reduction potentials and risks are presented for three different engine concepts. By using a developed combined approach, the friction losses of the base engines are separated to the sub-assemblies piston group, crankshaft journal bearings, and valve train over the full operation range of the engines. Unique analyzing of boundary conditions makes it possible for the first time to compare friction reduction potentials and possible risks, not only between diesel and gasoline engines for passenger car applications, but also with particular focus on the power density of the three engines. Firstly, the engines have been specifically chosen regarding their specific power output. Secondly, one identical SAE 5W30 lubricant suitable for all engines is used to neglect influences from different lubricant properties. Thirdly, identical test programs have been conducted at the same thermal boundary conditions at engine media supply temperatures of 70 ∘ C and 90 ∘ C. For the crankshaft journal bearings, high reduction potentials are identified, while risks arising occur at the valve train and the piston group systems.

Funder

Austrian Science Fund

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3