Use of Printed Sensors to Measure Strain in Rolling Bearings under Isolated Boundary Conditions

Author:

Bartz Marcel1ORCID,Häußler Felix2,Halmos Fabian1,Ankenbrand Markus2ORCID,Jüttner Michael1ORCID,Roudenko Jewgeni3,Wirsching Sven1,Reichenberger Marcus3,Franke Jörg2,Wartzack Sandro1ORCID

Affiliation:

1. Department of Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Engineering Design, Martensstraße 9, 91058 Erlangen, Germany

2. Department of Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Institute for Factory Automation and Production Systems, Egerlandstraße 7, 91058 Erlangen, Germany

3. Institute for Chemistry, Materials- and Product Development (OHM-CMP), Technische Hochschule Nürnberg Georg Simon Ohm, Keßlerplatz 12, 90489 Nuremberg, Germany

Abstract

The knowledge of the operating conditions in rolling bearings in technical applications offers many advantages, for example, to ensure a safe operation and to save resources and costs with the help of condition monitoring and predictive maintenance procedures. In many cases, it is difficult to implement sensors to measure the operating conditions of the rolling bearing, for reasons such as inaccessibility of the mounting position or non-compliance with installation space neutrality, which influences the sensor on the measuring point. Printed sensors using a digital deposition process, which can be used in very narrow design spaces, offer advantages in this respect. So far, these sensors have not been established in rolling bearings, so there is potential for technical application. This paper discusses the fundamental advantages and disadvantages as well as the challenges of the application, and it demonstrates the feasibility under isolated boundary conditions by applying a printed strain gauge sensor to the outer ring of a cylindrical roller bearing NU210 in an experimental setup to measure the strain under load. In this setup, the outer ring is deformed by 2 mm under an increasing radial load using a hydraulic press, and the strain is measured. Both a commercial reference sensor and a FE-simulation are used to validate the measurement. The results show that an implementation using printed sensors as a strain gauge works successfully. The resulting challenges, such as measuring strain gradients and printing on curved surfaces, are finally evaluated, and an outlook for further work is given.

Funder

German Ministry of Economic Affairs and Climate Action

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3