In-Situ Synthesis and Characterization of Biodegradable Estolides via Epoxidation from Canola Biodiesel

Author:

Borugadda Venu,Dalai Ajay

Abstract

Research on the formulation of estolides from plant seed oils has attracted substantial attention due to their favorable low-temperature properties and environmentally friendly nature. The present research investigates the formulation of canola biodiesel derived estolides for low-temperature applications. The dual-step research method includes ring opening of epoxidized canola biodiesel in the presence of oleic acid, followed by esterification with oleic acid to produce estolides using a mesoporous aluminosilicates possessing Modernite Framework Inverted (MFI) type pentasil structure as a heterogeneous acidic catalyst. Prepared catalyst was characterized to measure the properties essential for the effective catalysis. The catalyst demonstrated promising activity for the estolides formation, >95% conversion was achieved at 110 °C for 6 h using 15 wt % of catalyst loading. 1H NMR technique and oxirane oxygen titrimetric analysis were employed to determine product purity. Physicochemical properties of the reaction products were determined by standard methods and characterization results revealed that the formulated estolides had improved low-temperature, lubricity and rheological properties, and thermo-oxidative stability. Also, biodegradability of the estolides was found to be 92% within 28 days as per the bio-kinetic model. Wear scar diameter of 106 µm was noticed for 10% of alkoxide blend with standard diesel fuel. Overall, outcomes of the physicochemical characterization data indicated that the prepared estolides can act as possible alternative bio-lubricant basestock for various low-temperature applications.

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3