Combined Effect of Fluid Cavitation and Inertia on the Pressure Buildup of Parallel Textured Surfaces

Author:

Ma Xuezhong1

Affiliation:

1. College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China

Abstract

A mathematical model is developed to investigate the combined effect of fluid cavitation and inertia on the fluid pressure buildup of parallel textured surfaces. The fluid cavitation is analyzed using the Rayleigh–Plesset model, and the fluid inertia is analyzed with an averaged method. The finite element method and Newton-downhill method are employed to solve the governing equations. The numerical model is validated by comparing the experimental and numerical results, and the combined effect of fluid cavitation and inertia on the fluid pressure buildup is analyzed and discussed. The research indicates that the cavitation weakens the fluid inertia effect on the pressure distribution at the inlet area of textures. The fluid inertia greatly enhances the hydrodynamic effect and effectively limits the excessive extension of the low-pressure zone caused by cavitation. The fluid cavitation and inertia, especially their interaction, significantly affect the fluid pressure buildup and generate a net load-carrying capacity (LCC). The numerical model with the fluid inertia and cavitation is more time saving than the commercial CFD tools in solutions, which gives a novel and optional HD foundation for developing a more efficient and accurate THD or TEHD model by numerical programming.

Funder

National Natural Science Foundation of China

Natural Science foundation of Gansu Province

Hongliu Distinguished Young Talent Support Program of Lanzhou University of Technology

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3