Preparation and Tribological Behaviors of Sulfur- and Phosphorus-Free Organic Friction Modifier of Amide–Ester Type

Author:

Xu Xiaomei12,Yang Fan12,Yang Hongmei2ORCID,Zhao Yanan2,Sun Xiuli2,Tang Yong2

Affiliation:

1. School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China

2. State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

Abstract

With the increasingly demanding engine conditions and the implementation of “double carbon” policies, the demand for high-quality lubricants that are cost-effective and environmentally friendly is increasing. Additives, especially high-performance friction modifiers, play an important role in boosting lubricant efficiency and fuel economy, so their developments are at the forefront of lubrication technologies. In this study, 1,3-dioleoamide-2-propyloleate (DOAPO), which incorporates polar amide, ester, and nonpolar alkyl chains, was synthesized from 1,3-diamino-2-propanol to give an eco-friendly organic friction modifier. Nuclear magnetic resonance (NMR), high-resolution mass spectrometry (HR-MS), Fourier-transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA) were used to characterize the structure and thermal stability of DOAPO. Meanwhile, the storage stability and tribological behaviors of DOAPO in synthetic base oil were studied and compared with a commercial oleamide. The results show that DOAPO has better thermal stability and better storage stability in synthetic base oil. Additionally, 0.5 wt.% of DOAPO could shorten the running-in period and reduce the average friction coefficient (ave. COF) and wear scar diameter (ave. WSD) by 8.2% and 16.2%, respectively. The worn surface analysis and theoretical calculation results show that the ester bond in DOAPO breaks preferentially during friction, which can reduce the interfacial shear force and easily react with metal surfaces to form iron oxide films, thus demonstrating a better friction-reducing and anti-wear performance.

Funder

National Natural Science Foundation of China Joint Fund

China National Nuclear Corporation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3