Process-Integrated Component Microtexturing for Tribologically Optimized Contacts Using the Example of the Cam Tappet—Numerical Design, Manufacturing, DLC-Coating and Experimental Analysis

Author:

Orgeldinger Christian1ORCID,Reck Manuel2,Seynstahl Armin1ORCID,Rosnitschek Tobias1ORCID,Merklein Marion2,Tremmel Stephan1ORCID

Affiliation:

1. Engineering Design and CAD, Universität Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany

2. Institute of Manufacturing Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 13, 91058 Erlangen, Germany

Abstract

To meet the demand for energy-efficient and, at the same time, durable, functional components, the improvement of tribological behavior is playing an increasingly important role. One approach to reducing friction in lubricated tribological systems is the microtexturing of the surfaces tailored to the application, but in most cases, this leads to increased manufacturing costs and thus often makes their use in industry more difficult. In this work, we, therefore, present an approach for an efficient design and fully integrated production process using a cam tappet as an example. For the used cam tappet contact, we first determined the optimal texture geometries using two differently complex EHL (elastohydrodynamic lubrication) simulation models. Based on these, textured tappets were manufactured in a combined manner using sheet-bulk metal-forming and deposition with a diamond-like-carbon (DLC) coating for additional wear protection without further post-processing of the coating. We show that the simulation approach used has a rather subordinate influence on the optimization result. The combined forming of components with textured surfaces is limited by the local material flow, the resulting texture distortion, and tool wear. However, a targeted process design can help to exploit the potential of single-stage forming. The applied DLC coating has good adhesion and can completely prevent wear in subsequent reciprocal pin-on-disc tests, while the friction in the run-in behavior is initially higher due to the soothing effects of the coating. The experiments also show a tendency for shallow textures to exhibit lower friction compared to deeper ones, which corresponds to the expectations from the simulation.

Funder

German Research Foundation

Open Access Publishing Fund of the University of Bayreuth

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3