Abstract
Three different and very small amounts of alumina (0.2, 0.3 and 0.5 wt. %) in two sizes (approx. 25 and 100 nm) were used to enhance the wear characteristics of ZA-27 alloy-based nanocomposites. Production was realised through mechanical alloying in pre-processing and compocasting processes. Wear tests were under lubricated sliding conditions on a block-on-disc tribometer, at two sliding speeds (0.25 and 1 m/s), two normal loads (40 and 100 N) and a sliding distance of 1000 m. Experimental results were analysed by applying the response surface methodology (RSM) and a suitable mathematical model for the wear rate of tested nanocomposites was developed. Appropriate wear maps were constructed and the wear mechanism is discussed in this paper. The accuracy of the prediction was evaluated with the use of an artificial neural network (ANN). The architecture of the used ANN was 4-5-1 and the obtained overall regression coefficient was 0.98729. The comparison of the predicting methods showed that ANN is more efficient in predicting wear.
Funder
Republic of Serbia, Ministry of Education, Science and Technological Development
Ministry of Education, Youth and Sports of the Czech Republic
Slovenian Research Agency
Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic
Republic of Serbia and the Republic of Austria
Subject
Surfaces, Coatings and Films,Mechanical Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献