Abstract
For a tribological experiment involving a steel shaft sliding in a self-lubricating bronze bearing, a semi-supervised machine learning method for the classification of the state of operation is proposed. During the translatory oscillating motion, the system may undergo different states of operation from normal to critical, showing self-recovering behaviour. A Random Forest classifier was trained on individual cycles from the lateral force data from four distinct experimental runs in order to distinguish between four states of operation. The labelling of the individual cycles proved to be crucial for a high prediction accuracy of the trained RF classifier. The proposed semi-supervised approach allows choosing within a range between automatically generated labels and full manual labelling by an expert user. The algorithm was at the current state used for ex post classification of the state of operation. Considering the results from the ex post analysis and providing a sufficiently sized training dataset, online classification of the state of operation of a system will be possible. This will allow taking active countermeasures to stabilise the system or to terminate the experiment before major damage occurs.
Funder
Austrian COMET Program - Project InTribology
Subject
Surfaces, Coatings and Films,Mechanical Engineering
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献