Wear Properties of C-MoS2-PTFE Composite Coating Prepared on 4032 Aluminum Alloy

Author:

Chen Xuehui,Zhang Yuxi,Li Congmin,Huang Lei,Wang Yu,Gao Ting,Zhang Zhenbin,Liu Wei

Abstract

A large number of joint friction pairs work during the work of scroll compressors, resulting in high energy consumption and short service life of scroll compressors. To improve the tribological performance of friction pairs of the scroll compressors, the C-MoS2-PTFE (Polytetrafluoroethylene) lubrication coating is prepared through spraying technology on the surface of 4032 aluminum alloy, a common material for scroll compressors. The microstructure of the C-MoS2-PTFE coating was analyzed by X-ray diffractometer (XRD) and scanning electron microscope (SEM), and the wear behavior of the coating under different loads was studied by reciprocating friction and wear testing machine and three-dimensional profiler. The surface of the grinding marks was analyzed by SEM and energy density spectrum (EDS). The performance was compared with the anodized film of 4032 aluminum alloy and the Ni-coated coating of 4032 aluminum alloy. The experimental results show that the C-MoS2-PTFE coating has a dense structure, and the hardness is 35 HV0.1. Under dry friction conditions, the C-MoS2-PTFE coating has excellent wear reduction and wear resistance, and the coefficient of friction and wears rate under different loads are less than those of the anodized film of 4032 aluminum alloy and the Ni-plated coating. The wear mechanisms of C-MoS2-PTFE coating are fatigue wear, adhesive wear, abrasive wear, and oxidation wear under different loads.

Funder

This research was supported by the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3