Abstract
The accuracy of five-axis machine tools is a key performance indicator. Among the various error sources of high precision five-axis machine tools, thermal and geometric errors occupy the majority. Thermal errors have become the largest error source of high precision five-axis machine tools, accounting for about 45% of the total errors. Accurate measurement of thermal errors plays a vital role in improving the accuracy of five-axis machine tools. Taking the Shenyang HTM50100 turning and milling machine tool as an example, this paper proposes a method to measure the thermal error of the machine tool spindle using the five-point test method. In the process of thermal error modeling, we select the temperature key point and analyze the collected data. Finally, we evaluate thermal error model. The method is verified by an experiment. The experiment results show that the method is highly accurate, fast, and easy to use. It provides a theoretical basis and practical method for the measurement of thermal errors on five-axis machine tools. By evaluating the method based on multiple linear regression, the predictive ability of the model is about 77%. Compared with LSTM, the prediction accuracy is improved by 5.08%.
Funder
2021 Graduate Innovation Fund Project of China University of Geosciences, Beijing
Subject
Surfaces, Coatings and Films,Mechanical Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献