Squeeze Flow of Bingham Fluids through Reticulated, Compressed Foams

Author:

Turtoi ,Pascovici ,Cicone

Abstract

The paper presents experimental and theoretical results for the planar squeeze flow of a finite volume of viscoplastic material through a highly deformable porous layer. The central zone of an annular disc made of a reticulated polyurethane foam with high porosity (ε > 0.97) was fully filled with tooth paste. The porous disc placed between two flat, impermeable, parallel, and rigid discs was subjected to compression and the normal force was recorded. After compression, the radial extension of the squeezed fluid was measured. The visualisation of the compressed disc managed to provide evidence of a tortuous flow inside the porous structure. An original analytical model is proposed for the prediction of the front of the flow inside the porous layer and corresponding resistant normal force. The model combines the Covey and Stanmore (1981) model for squeeze flow of a Bingham fluid inside the central zone, with an original approach for flow through the reticulated foams, based on the concept of “equivalent flow tubes” with variable tortuosity. This explorative investigation is of interest for innovative shock absorbers. The model validity covers both low and high plasticity numbers and was experimentally validated for low speed.

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Reference26 articles.

1. Squeeze-film of unconformal, compliant and layered contacts

2. Squeeze film of conformal, layered, compliant and porous contacts;Pascovici;Acta Teh. Napoc. Ser. Appl. Math. Mech.,2004

3. Squeeze effects of an infinitely long, rigid cylinder on a highly compressible porous layer imbibed with liquid;Radu;UPB Sci. Bull. Ser. D,2014

4. Impact of a rigid sphere on a highly compressible porous layer imbibed with a Newtonian liquid

5. Experimental determination of the damping capacity of highly compressible porous materials imbibed with water;Radu;J. Balkan Tribol. Assoc.,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3