Research on Leakage Prediction Calculation Method for Dynamic Seal Ring in Underground Equipment

Author:

Xu Xiaohui12,Li Xin12ORCID,Wang Fengtao12ORCID,Xia Chunmiao3

Affiliation:

1. School of Mechanical Engineering, Anhui Polytechnic University, Wuhu 241000, China

2. The Center of Mechanical Dynamics and Control Technology, Anhui Polytechnic University, Wuhu 241000, China

3. School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China

Abstract

The leakage prediction calculation method for dynamic seal rings in underground equipment is presented in this paper. The framework of the method is given. The leakage prediction model is built. The non-Newtonian fluid interface element is brought in. The leakage prediction calculation method was developed based on the thermal–structural coupled method and the fluid–structural coupled method. A test is performed to validate the proposed method. It is proved that the film thickness of an O-ring made of nitrile rubber in pulling-in travel is thicker than that in pushing-out travel. The leakage of an O-ring made of fluororubber is larger than that of an O-ring made of nitrile rubber in the same environmental condition. The presented method is useful for predicting the sealing ability of dynamic seal rings in underground equipment. Evaluation costs will be reduced with the given leakage prediction calculation method.

Funder

Anhui University Natural Science Research Project

Fund of Introducing Talent People of Anhui Polytechnic University

Anhui Future Technology Research Institute Enterprise Cooperation Project

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3