A Study on the Thermal Properties of Oil-Film Viscosity in Squeeze Film Dampers

Author:

Zhou Hailun1,Cao Gangyi1ORCID,Chen Xi2,Zhang Yuqi1,Cang Yangguang1

Affiliation:

1. School of Aeroengine, Shenyang Aerospace University, Shenyang 110136, China

2. Wuxi Orient Software Technology Co., Ltd., Wuxi 214082, China

Abstract

Considering the variation in temperature of the oil film in squeeze film dampers (SFDs) caused by squeezing, a more comprehensive analysis of SFD can be obtained. Aiming to investigate the viscosity thermal effect of the oil film in SFDs, this study established a 3D CFD solution model. Based on the total energy model, the viscosity thermal effect was performed. With the mixture multi–phase flow model, the Zwart–Gerber–Belamri (Z–G–B) cavitation model, and the use of the additional mass coefficient, the two–phase flow phenomenon in SFDs was discussed. The oil film at various temperatures and the temperature distribution of different oil types under different working conditions were analyzed. Furthermore, the influence of the SFD thermal effect on the two–phase flow phenomenon were particularly carried out. Meanwhile, the simulation results of the SFD thermal effect were experimentally verified. The results revealed that the maximum temperature of the SFD oil film was enhanced with the increase in the eccentricity ratio and precession frequency. The temperature of the oil film was closely related to the oil dynamic viscosity. The dynamic viscosity of the oil was reduced, which was caused by the SFD thermal effect, thus leading to decreased oil–film damping, enlarging the vaporization level and the range of vapor cavitation, as well as the ingested air amount. CFD simulation results of the thermal effect were in good agreement with the experimental data, which verified the accuracy of the proposed model.

Funder

National Natural Science Foundation of China

Plan for Young and Middle–aged Innovators of Shenyang

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3