Effect of Third-Particle Material and Contact Mode on Tribology Contact Characteristics at Interface

Author:

Horng Jeng-Haur1ORCID,Yu Chia-Chun1,Chen Yang-Yuan1ORCID

Affiliation:

1. Department of Power Mechanical Engineering, National Formosa University, No. 64, Wenhua Rd., Huwei Township, Yunlin City 632, Taiwan

Abstract

A moving pair with two-body contact is the ideal situation assumed in previous analyses. However, all moving pairs are in a three-body contact state at the start of operation or immediately after the start of operation, such as bearings, ball-screws, gears and engines. This work studies the influence of wear particles (SUJ2), environmental particles (SiO2 and Al2O3) and nano-additives (CuO) on the tribological contact characteristics under different particle concentrations, particle sizes, surface roughnesses and contact modes. The three-body microcontact analysis revealed that the differences in the real contact area, particle contact area and separation of the four-particle materials in the three-body s–s and p–s contact modes are rather small. Under the three-body hybrid contact mode, the difference is relatively large and the sequence of the real contact area value obtained due to the elastic modulus for the four-particle material at this interface is Al2O3 > SUJ2 > CuO > SiO2. The order of the other two contact characteristics is reversed. The difference increases as the particle size or particle concentration increases. The order of the critical load required to transform three kinds of contact modes is SiO2 > CuO > SUJ2 > Al2O3. On the nearly initial three-body hybrid contact mode, the plastic contact area ratio at the interface first increases to a critical value and then decreases as the load increases because the original plastic contact spot area and contact spot number increases with the increase in load. At the same time, the elasto-plastic contact area ratio decreases to a low value and then increases. The elastic contact area ratio at the interface decreases as the load increases. Among the four third-particle materials, the experimental results and theoretical predictions show that the environmental particles, Al2O3, cause the maximum friction and wear observed at the interface.

Funder

National Ministry of Science and Technology, Taiwan

National Formosa University, Taiwan

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Reference52 articles.

1. The third particle approach: A mechanical view of wear;Godet;Wear,1984

2. Third particles in tribology;Godet;Wear,1990

3. Heshmat, H., Godet, M., and Berthier, Y. (1994, January 1–5). On the Role and Mechanism of Dry Triboparticulate Lubrication. Proceedings of the 49th STLE Annual Meeting, Pittsburgh, PN, USA.

4. The effects of particle characteristics on three-body abrasive wear;Stachowiak;Wear,2001

5. Novel three-body nano-abrasive wear mechanism;Ruling;Friction,2022

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3