An Experimental Study on Ultrasonic Vibration-Assisted Turning of Aluminum Alloy 6061 with Vegetable Oil-Based Nanofluid Minimum Quantity Lubrication

Author:

Liu Guoliang12ORCID,Wang Jin2,Zheng Jintao2,Ji Min2,Wang Xiangyu3ORCID

Affiliation:

1. State Key Laboratory of Mechanical Transmission for Advanced Equipment, Chongqing University, Chongqing 400044, China

2. School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China

3. School of Mechanical Engineering, University of Jinan, Jinan 250022, China

Abstract

Minimum quantity lubrication (MQL) is a potential technology for reducing the consumption of cutting fluids in machining processes. However, there is a need for further improvement in its lubrication and cooling properties. Nanofluid MQL (NMQL) and ultrasonic vibration-assisted machining are both effective methods of enhancing MQL. To achieve an optimal result, this work presents a new method of combining nanofluid MQL with ultrasonic vibration assistance in a turning process. Comparative experimental studies were conducted for two types of turning processes of aluminum alloy 6061, including conventional turning (CT) and ultrasonic vibration-assisted turning (UVAT). For each turning process, five types of lubricating methods were applied, including dry, MQL, nanofluid MQL with graphene nanosheets (GN-MQL), nanofluid MQL with diamond nanoparticles (DN-MQL), and nanofluid MQL with a diamond/graphene hybrid (GN+DN-MQL). A specific cutting energy and areal surface roughness were adopted to evaluate the machinability. The results show that the new method can further improve the machining performance by reducing the specific cutting energy and areal surface roughness, compared with the NMQL turning process and UVAT process. The diamond nanoparticles are easy to embed on the workpiece surface under the UVAT process, which can increase the specific cutting energy and Sa as compared to the MQL method. The graphene nanosheets can produce the interlayer shear effect and be squeezed into the workpiece, thus reducing the specific cutting energy. The results provide a new way for the development of eco-friendly machining.

Funder

Open Research Fund of State Key Laboratory of Mechanical Transmission for Advanced Equipment, Chongqing University

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3