Bionic Design and Optimization of the Wear-Resistant Structure of Piston Rings in Internal Combustion Engines

Author:

Tian Weijun12ORCID,Zhang Jinhua1,Zhou Kuiyue1ORCID,Chen Zhu1,Shen Ziteng1,Yang Xiaobin3,Cong Qian12

Affiliation:

1. Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China

2. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China

3. Machinery Industry Ninth Design Institute Co., Ltd., Changchun 130011, China

Abstract

Internal combustion engines, during their operation, subject the piston to high-temperature and high-pressure conditions, requiring it to endure intense, continuous reciprocating motion. This strenuous process leads to significant wear and tear. Among the engine’s crucial components, the piston ring plays a pivotal role but is particularly susceptible to wear. Therefore, extensive research has been devoted to investigating the wear of piston rings, a critical sealing component within internal combustion engines. To address the high cost of existing coating methods, which hinders widespread application, we propose a bionic design approach inspired by groove structures observed on earthworm bodies, aimed at enhancing the wear resistance of piston rings. Bionic piston rings featuring optimally designed groove structures inspired by the earthworm’s anatomy were designed. These rings exhibited varying groove depths (1 mm, 2 mm, and 3 mm), groove widths (0.1 mm, 0.3 mm, and 0.5 mm), and groove spacings (0.1 mm, 0.2 mm, and 0.3 mm). We conducted thermal–structural coupling analyses on both standard piston rings and these bionic counterparts. The results revealed that the maximum stress was concentrated at the first piston ring, precisely at the opposing region of the end gap. Thus, the initial piston ring endured the primary frictional losses. Moreover, a comparison of stress levels between bionic rings and the standard ring revealed that the bionic groove structure substantially reduced stress and minimized stress concentration, thus enhancing wear resistance. Groove width had the most notable influence on wear performance, followed by groove depth and groove spacing. Optimal wear resistance was achieved when the groove depth was 3 mm, groove width was 0.1 mm, and groove spacing was 0.1 mm. Subsequently, we constructed a piston ring friction test bench to validate the wear resistance of the most effective piston ring. The results indicated that the wear resistance of the bionic piston ring exceeded that of the standard piston ring by up to 19.627%. Therefore, incorporating a bionic groove structure within the piston ring can effectively reduce surface friction and enhance wear resistance. This, in turn, can enhance the operational lifespan of internal combustion engines under favorable working conditions.

Funder

Science and Technology Development Program of Jilin Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3