The Applicability of the Hertzian Formulas to Point Contacts of Spheres and Spherical Caps

Author:

Ciulli EnricoORCID,Betti AlbertoORCID,Forte PaolaORCID

Abstract

Hertzian formulas are commonly used for the evaluation of deformation and pressure distribution of non-conformal and slightly conformal mechanical pairs to estimate component stiffness and durability. For the sake of simplicity, their use is extended even to those cases in which Hertz’s hypotheses do not hold. This paper summarizes Hertz’s theory and compares the results obtained with theoretical and finite element analysis of the point contact of non-conformal and conformal pairs made of spheres, caps, and spherical seats. This study was motivated by the non-Hertzian behavior of a tilting pad bearing ball-and-socket pivot conforming contact observed by the authors in previous experiments. In particular, the displacement and force relation were investigated by varying the geometrical parameters, the materials, the boundary conditions, and the friction coefficient. In the case of non-conformal contact, the parameter variations had negligible effect in agreement with Hertz’s theory while for conformal contact, the cap and seat height and width and the relative clearance were the most influential parameters on the non-Hertzian behavior. These novel results indicate that in conformal pairs, such as for tilting pad bearing ball-and-socket pivots, whenever Hertz’s hypotheses are not satisfied and the assessment of contact stiffness is crucial, Hertzian formulas should not be applied as done in common practice, instead more accurate numerical or experimental evaluation should be made.

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Reference28 articles.

1. On the contact of rigid elastic solids and on hardness;Hertz,1896

2. Pressure Distribution between Closely Contacting Surfaces

3. Evaluation of Pivot Stiffness for Typical Tilting-Pad Journal Bearing Designs

4. Fundamental of Fluid Film Lubrication;Hamrock,1994

5. Elastohydrodynamics;Gohar,1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3