Reproducibility of Gaseous Phase Area on Journal Bearing Utilizing Multi-Phase Flow CFD Analysis under Flooded and Starved Lubrication Conditions

Author:

Ochiai Masayuki,Sakai Fuma,Hashimoto Hiromu

Abstract

It is important to predict the gaseous phase area of journal bearing. However, a detailed calculation method for such gaseous phase areas has not yet been proposed. In this study, the gaseous-phase areas in small bore journal bearings under flooded and starved lubrication conditions are analyzed in terms of the computational fluid dynamics (CFD) of two-phase flow while using a volume of fluid (VOF) method. Furthermore, the influence of surface tension and vapor pressure conditions were investigated, and the analytical and experimental results were compared. The analytical results of VOF for vapor pressure and surface tension were observed to be consistent with the experimental observations under both flooded and starved lubrication conditions. Furthermore, under starved lubrication condition, the analytical results agree well with the observed results for the interface of the oil film and cavitation upon the rupture of the oil film. While using these results, CFD analysis of the two-phase flow of the VOF can be conducted in terms of vapor pressure and surface tension to estimate the gaseous-phase areas of journal bearings under flooded and starved lubrication conditions.

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Reference25 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3