Investigating Extreme Snowfall Changes in China Based on an Ensemble of High-Resolution Regional Climate Models

Author:

Zhu Jinxin1ORCID,Weng Xuerou1,Guo Bing2,Zeng Xueting3,Dong Cong4

Affiliation:

1. School of Geography and Planning, Sun Yat-sen University, Guangzhou 510055, China

2. School of Civil and Architectural Engineering, Shandong University of Technology, Zibo 255049, China

3. School of Labor Economics, Capital University of Economics and Business, Beijing 100070, China

4. Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S0A2, Canada

Abstract

Anthropogenically induced global warming intensifies the water cycle around the world. As a critical sector of the water cycle, snow depth and its related extremes greatly impact agriculture, animal husbandry, and food security, yet lack investigation. In this study, five high-resolution climate models are selected to simulate and project snow depth and its extremes over China. The simulation capabilities of models in reproducing the basic climate variables in winter are gauged in terms of spatial and temporal patterns over nine subregions. It is found that the driving global climate model (GCM) can contribute to similar patterns, while the different regional climate model (RCM) schemes lead to large variations in the snowfall accumulating on the land surface. The warming magnitude is larger under a higher representative concentration pathway (RCP) scenario (2.5 °C greater under RCP8.5 than RCP4.5). The distribution of ensemble mean winter precipitation changes is more fragmented because of the relatively low skill in reproducing water-related content in the climate system. The projected precipitation change is larger under RCP8.5 than under RCP4.5 due to the amplification of the hydrological cycle by temperature warming. The projected changes in the ensemble mean snow depth mainly occur over the Tibetan Plateau with a decreasing trend. Only several grids over the Himalayas Mountains and the upper stream of the Yarlung Zangbo River are projected with a slight increase in snow depth. Both the intensity and frequency of extreme snow events are projected to increase in Northeast China and Inner Mongolia, which are important agricultural and animal husbandry production areas in China. The reason behind this projection can be explained by the fact that the hydrological cycle intensified by temperature warming leads to excessive snowfall stacking up during winter. The changes in extreme snowfall events in the future will have a significant impact on China’s agricultural and animal husbandry production and threaten food security.

Funder

Guangzhou Basic and Applied Basic Research Foundation

Fundamental Research Funds for the Central Universities-Sun Yat-Sen University

Hong Kong Research Grants Council Early Career Scheme

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3