Suspended Sediment Source and Transport Mechanisms in a Himalayan River

Author:

Ghimire Sanyam1ORCID,Singh Umesh2,Panthi Krishna Kanta1ORCID,Bhattarai Pawan Kumar3ORCID

Affiliation:

1. Department of Geoscience and Petroleum, Norwegian University of Science and Technology (NTNU), Petroleumsteknisk Senter, F 410, Valgrinda, S.P. Andersens Vei 15a, 7031 Trondheim, Norway

2. Hydro Lab Pvt. Ltd., Lalitpur 44600, Nepal

3. Department of Civil Engineering, Pulchowk Campus, Institute of Engineering, Tribhuvan University, Kathmandu 44600, Nepal

Abstract

The process of estimating sediment load has been a daunting issue in hydraulics and the water resource field. Several methods exist for predicting the sediment load in a catchment or river, but the majority of these methods are empirical and depend on the specific location where they are used. Understanding the underlying mechanism of sediment generation and its transport in connection with precipitation, topography, and subsurface conditions to characterize its process is helpful for determining the sediment load in a river. For this purpose, we analyzed the daily suspended sediment data measured for 8 years at the headworks of the Kabeli A hydropower project in the Kabeli River, which originates from the Himalayan region. The analyses show that the suspended sediment concentration (SSC) varies in an orderly manner over time and asynchronously between seasons with respect to the river discharge. Clockwise hysteresis is observed in the yearly plots between the SSC and river discharge. The hysteresis becomes narrower when compared with the direct runoff obtained from a digital filtering algorithm and, even more so with the direct runoff from the hydrological model SWAT. The analysis shows that the sediment concentration is controlled not only by the total discharge in the river but also by the contribution of ground water to the river discharge, indicating that the total discharge alone cannot reflect the seasonal variation in SSC. It is inferred that the river is supply-limited and the hillslope is transport-limited with respect to sediment sources. The SWAT model suggests that the base flow contribution to the total river discharge is 78%. Here, we present a method for constructing the suspended sediment rating curve by comparing the direct runoff with the sediment concentration. The deduced sediment rating curve captures 84.51% of the total sediment load over the study period in the Kabeli River. This method may potentially be used in similar catchments with supply-limited rivers and transport-limited hillslopes.

Publisher

MDPI AG

Reference49 articles.

1. Milliman, J. (2001). Encyclopedia of Ocean Sciences, Elsevier.

2. World-wide delivery of sediment to the oceans;Milliman;J. Geol.,1983

3. The size, distribution, and mobility of landslides caused by the 2015 Mw7.8 Gorkha earthquake, Nepal;Roback;Geomorphology,2018

4. Reservoir Sedimentation: Impact, Extent, and Mitigation;Mahmood;World Bank Tech. Pap. Number,1988

5. Generation of a Suspended Sediment Rating Curve of a Himalayan River based on a Long-term Data: A case study of Kabeli River;Ghimire;Proc. 10th Ioe Grad. Conf.,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3