Dynamic Bayesian-Network-Based Approach to Enhance the Performance of Monthly Streamflow Prediction Considering Nonstationarity

Author:

Zhang Wen1,Xu Pengcheng1ORCID,Liu Chunming2,Fang Hongyuan1,Qiu Jianchun1ORCID,Zhang Changsheng3

Affiliation:

1. College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China

2. River Embankment Sluice Management Center of Jiangyin, Wuxi 214023, China

3. Jiangsu Hydraulic Engineering Construction Co., Ltd., Yangzhou 225009, China

Abstract

In recognizing the pervasive nonstationarity of hydrometeorological variables, a paradigm shift towards alternative analytical methodologies is imperative for refining hydroclimatic data modeling and prediction. We introduce a novel approach leveraging nonstationary Graphical Modeling and Bayesian Networks (NGM-BNs) tailored for hydrometeorological applications. Demonstrated through monthly streamflow forecasting in the Kashgar River Basin of China, our method illuminates the temporal evolution of network relationships, underscoring the dynamism inherent in both input variables and modeling parameters. The key to our approach is identifying the most suitable time horizon (MST) for model updates, which is intricately problem-specific and crucial for peak performance. This methodology not only unveils changing predictor significance across varying flow conditions but also elucidates the fluctuating temporal links between variables, especially under the lens of climate change, for instance, the growing impact of snowmelt on the Kashgar Basin’s streamflow. Compared to stationary counterparts, our nonstationary Bayesian framework excels in capturing extreme events by adeptly accommodating temporal shifts, outperforming traditional models including both stationary and nonstationary variants of Support Vector Regression (SVR) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS).

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Yangzhou Green Yang Jinfeng Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3