Improved Viability of Spray-Dried Pantoea agglomerans for Phage-Carrier Mediated Control of Fire Blight

Author:

Ibrahim Nassereldin123ORCID,Nesbitt Darlene4,Guo Qian (Tracy)1,Lin Janet5,Svircev Antonet4,Wang Qi1,Weadge Joel T.2ORCID,Anany Hany16ORCID

Affiliation:

1. Agriculture and Agri-Food Canada (AAFC), Guelph Research and Development Centre (GRDC), 93 Stone Rd W., Guelph, ON N1G 5C9, Canada

2. Department of Biology, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada

3. Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 32897, Egypt

4. Agriculture and Agri-Food Canada (AAFC), Vineland Station, ON L0R 2E0, Canada

5. National Microbiology Laboratory, National Health Agency, 110 Stone Rd. W., Guelph, ON N1G 3W4, Canada

6. Food Science Department, University of Guelph, Guelph, ON N1G 2W1, Canada

Abstract

Fire blight, caused by Erwinia amylovora, is a devastating bacterial disease that threatens apple and pear production. It is mainly controlled by using antibiotics, such as streptomycin. Due to development of E. amylovora resistant strains and the excessive agricultural use of antibiotics, there is an increased awareness of the possibility of antibiotic resistance gene transfer to other microbes. Urgent development of biocontrol agents (BCAs) is needed that can be incorporated into integrated pest management programs as antibiotic alternatives. A novel phage-carrier system (PCS) that combines an antagonistic bacterium, Pantoea agglomerans, with its ability to act as a phage-carrier bacterium for Erwinia phages has been developed. The low viability of P. agglomerans cells following spray-drying (SD) has been a challenge for the industrial-scale production of this PCS. Here, an SD protocol was developed for P. agglomerans by modifying the growth medium and bacterial cell formulation using D(+)-trehalose and maltodextrin. The developed protocol is amenable to the industrial-scale production of the BCA/PCS. The P. agglomerans viability was greater than 90% after SD and had a shelf life at 4 °C of 4 months, and reconstituted cells showed a 3 log reduction in E. amylovora counts with a pear disc assay.

Funder

Agriculture and Agri-Food Canada

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3