Applying the Nernst Equation to Control ORP in Denitrification Process for Uranium-Containing Nuclear Effluent with High Loads of Nitrogen and COD

Author:

Venturini MarianoORCID,Rossen Ariana,Bucci Paula,Silva Paulo Patricia

Abstract

Several reviews of denitrification have shown it to be an efficient process for treating high nitrate-loaded effluents from nuclear industries. However, stressful conditions adversely affect biological kinetic parameters and performance. Additionally, actual nuclear effluents contain multiple pollutants and radioactive emissions that could render implementation difficult. The objective of this study was to treat and recycle water from nuclear industries by using a mixture of blended real nuclear wastewater (BRNW). The process was carried out under physicochemical parameters control in a biological model to established a technical setup and to model the denitrification process in a real nuclear wastewater effluent. Denitrification processes were carried out in the wastewater sample under controlled ORP conditions by the Hill model to establish the kinetic model. The results show a complete elimination of nitrate by the bacteria. Indicators of biochemical reactions were used to obtain a model based on Monod and controlled ORP. The good fit of the proposed model was verified under empirical and simulated conditions. To establish optimal performance, it was necessary to add 3% v/v of methanol, as a carbon source, to remove the nitrate in BRNW. Isolation techniques confirmed that Pseudomonas spp. was the dominant bacteria. Gene expression demonstrated the lack of inhibition of the NosZ gene responsible for the reduction in nitric oxide, a “greenhouse gas”. Finally, COD and uranium were removed from the liquid by precipitation. At the end of the process, the treated effluent could potentially be reused in industrial processes, recycling most of the wastewater effluents.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference34 articles.

1. Modeling Operational Parameters for Uranium Dioxide Production Reactor through Uranium Trioxide Reaction Using Hydrogen

2. Purex Process a Solvent Extraction Reprocessing Method for Irradiates Uranium;Irish,1957

3. Plantas de Producción de Radioisótopos http://www.invap.com.ar/es/area-nuclear-de-invap/productos-y-servicios/plantas-produccion-de-radioisotopos.html

4. Zero Liquid Discharge (ZLD) https://condorchem.com/en/zld/

5. Biosorption-an alternative method for nuclear waste management: A critical review

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Real-time monitoring control of sequencing batch anammox process;Environmental Science and Pollution Research;2022-09-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3