Water Level Prediction Model Applying a Long Short-Term Memory (LSTM)–Gated Recurrent Unit (GRU) Method for Flood Prediction

Author:

Cho MinwooORCID,Kim ChangsuORCID,Jung KwanyoungORCID,Jung HoekyungORCID

Abstract

The damage caused by floods is increasing worldwide, and if floods can be predicted, the economic and human losses from floods can be reduced. A key parameter of flooding is water level data, and this paper proposes a water level prediction model using long short-term memory (LSTM) and a gated recurrent unit (GRU). As variables used as input data, meteorological data, including upstream and downstream water level, temperature, humidity, and precipitation, were used. The best results were obtained when the LSTM–GRU-based model and the Automated Synoptic Observing System (ASOS) meteorological data were included in the input data when experiments were performed with various model structures and different input data formats. As a result of the experiment, the mean squared error (MSE) value was 3.92, the Nash–Sutcliffe coefficient of efficiency (NSE) value was 0.942, and the mean absolute error (MAE) value was 2.22, the highest result in all cases. In addition, the test data included the historical maximum water level of 3552.38 cm in the study area, and the maximum water level error was also recorded as 55.49, the lowest result. Through this paper, it was possible to confirm the performance difference according to the composition of the input data and the time series prediction model. In a future study, we plan to implement a flood risk management system that can use the predicted water level to determine the risk of flooding, and evacuate in advance.

Funder

Korea Forest Service

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference50 articles.

1. Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation,2012

2. Special Report on the Ocean and Cryosphere in a Changing Climate,2019

3. The Human Cost of Disasters: An Overview of the Last 20 Years (2000–2019),2020

4. Attribution of extreme rainfall from Hurricane Harvey, August 2017

5. Development of Rainfall-Flood Damage Estimation Function using Nonlinear Regression Equation;Lee;J. Soc. Disaster Inf.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3