A Dynamic Optimization Tool to Size and Operate Solar Thermal District Heating Networks Production Plants

Author:

Delubac Régis,Serra SylvainORCID,Sochard Sabine,Reneaume Jean-MichelORCID

Abstract

The aim of the ISORC/OPTIMISER project is to increase and improve the use of solar thermal energy in district heating networks. One of the main tasks of the project is to develop an optimization tool for the sizing and operation of a solar district heating network. This is the first optimization tool using an open-source interface (Julia, JuMP) and solver (Ipopt) to solve nonlinear problems. This paper presents the multi-period optimization problem which is implemented to consider the dynamic variations in a year, represented by four typical days, with an hourly resolution. The optimum is calculated for a total duration of 20 years. First, this paper presents the modeling of the different components of a solar district heating network production plant: district network demand, storage and three sources, i.e., a fossil (gas) and two renewable (solar and biomass) sources. In order to avoid prohibitive computational time, the modeling of sources and storage has to be fairly simple. The multi-period optimization problem was formulated. The chosen objective function is economic: The provided economic model is accurate and use nonlinear equations. Finally the formulated problem is a nonlinear Programming problem. Optimization of the studied case exhibits consistent operating profiles and design. A comparison is made of different types of storage connection at the production site, highlighting the relevance of placing the storage at the solar field outlet. The optimum configuration supplies 49% of demand using solar energy, achieving a renewable rate of 69% in combination with the biomass boiler.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3